direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×C42⋊3C4, C24.38D4, C42⋊5(C2×C4), (C2×C42)⋊10C4, (C22×Q8)⋊9C4, C23.8(C2×D4), (C2×D4).130D4, C4.4D4⋊20C4, (C2×D4).19C23, C23⋊C4.11C22, C22.51(C23⋊C4), C23.23(C22⋊C4), C4.4D4.120C22, (C22×D4).102C22, (C2×Q8)⋊3(C2×C4), C2.37(C2×C23⋊C4), (C2×D4).127(C2×C4), (C2×C23⋊C4).10C2, (C2×C4).94(C22×C4), (C22×C4).80(C2×C4), (C2×C4).50(C22⋊C4), (C2×C4.4D4).13C2, C22.61(C2×C22⋊C4), SmallGroup(128,857)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C42⋊3C4
G = < a,b,c,d | a2=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >
Subgroups: 388 in 142 conjugacy classes, 44 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C23⋊C4, C23⋊C4, C2×C42, C2×C22⋊C4, C4.4D4, C4.4D4, C22×D4, C22×Q8, C42⋊3C4, C2×C23⋊C4, C2×C4.4D4, C2×C42⋊3C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C42⋊3C4, C2×C23⋊C4, C2×C42⋊3C4
Character table of C2×C42⋊3C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | i | 1 | -i | -i | i | -1 | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -1 | -i | i | i | -1 | -i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -1 | i | -i | -i | -1 | i | i | -i | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | -i | 1 | i | i | -i | -1 | -i | i | i | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -1 | i | i | -i | 1 | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | i | i | 1 | i | -i | -i | 1 | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -i | 1 | -i | i | i | 1 | i | i | -i | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -1 | -i | -i | i | 1 | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | -2i | 2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 2i | -2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
(1 7)(2 8)(3 5)(4 6)(9 26)(10 27)(11 28)(12 25)(13 22)(14 23)(15 24)(16 21)(17 31)(18 32)(19 29)(20 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 27 30 14)(2 28 31 15)(3 25 32 16)(4 26 29 13)(5 12 18 21)(6 9 19 22)(7 10 20 23)(8 11 17 24)
(1 9 14 8)(2 7 26 23)(3 24 16 19)(4 18 28 12)(5 15 21 29)(6 32 11 25)(10 31 20 13)(17 30 22 27)
G:=sub<Sym(32)| (1,7)(2,8)(3,5)(4,6)(9,26)(10,27)(11,28)(12,25)(13,22)(14,23)(15,24)(16,21)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,30,14)(2,28,31,15)(3,25,32,16)(4,26,29,13)(5,12,18,21)(6,9,19,22)(7,10,20,23)(8,11,17,24), (1,9,14,8)(2,7,26,23)(3,24,16,19)(4,18,28,12)(5,15,21,29)(6,32,11,25)(10,31,20,13)(17,30,22,27)>;
G:=Group( (1,7)(2,8)(3,5)(4,6)(9,26)(10,27)(11,28)(12,25)(13,22)(14,23)(15,24)(16,21)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,30,14)(2,28,31,15)(3,25,32,16)(4,26,29,13)(5,12,18,21)(6,9,19,22)(7,10,20,23)(8,11,17,24), (1,9,14,8)(2,7,26,23)(3,24,16,19)(4,18,28,12)(5,15,21,29)(6,32,11,25)(10,31,20,13)(17,30,22,27) );
G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,26),(10,27),(11,28),(12,25),(13,22),(14,23),(15,24),(16,21),(17,31),(18,32),(19,29),(20,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,27,30,14),(2,28,31,15),(3,25,32,16),(4,26,29,13),(5,12,18,21),(6,9,19,22),(7,10,20,23),(8,11,17,24)], [(1,9,14,8),(2,7,26,23),(3,24,16,19),(4,18,28,12),(5,15,21,29),(6,32,11,25),(10,31,20,13),(17,30,22,27)]])
Matrix representation of C2×C42⋊3C4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 2 | 2 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 2 | 3 | 0 |
0 | 0 | 3 | 2 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 4 | 1 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 2 | 2 |
0 | 0 | 2 | 0 | 2 | 2 |
0 | 0 | 0 | 3 | 0 | 3 |
0 | 0 | 3 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,0,3,3,0,0,3,3,2,2,0,0,2,0,3,0,0,0,2,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,1,1,0,0,0,0,0,4,0,0,3,4,1,1,0,0,0,1,0,0],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,2,2,0,3,0,0,2,0,3,0,0,0,2,2,0,0,0,0,2,2,3,3] >;
C2×C42⋊3C4 in GAP, Magma, Sage, TeX
C_2\times C_4^2\rtimes_3C_4
% in TeX
G:=Group("C2xC4^2:3C4");
// GroupNames label
G:=SmallGroup(128,857);
// by ID
G=gap.SmallGroup(128,857);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,456,1123,1018,248,1971,375,4037]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations
Export